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Cosmological influence of super-Hubble perturbations
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The existence of cosmological perturbations of wavelength larger than the Hubble radius is a generic
prediction of the inflationary paradigm. We provide the derivation beyond perturbation theory of a
conserved quantity which generalizes the linear comoving curvature perturbation. As a by-product,
we show that super-Hubble-radius (super-Hubble) perturbations have no physical influence on local
observables (e.g., the local expansion rate) if cosmological perturbations are of the adiabatic type.

PACS numbers: 98.80.cq

Inflation is an elegant explanation for the flatness, horizon, and monopole problems of the standard big-bang cos-
mology [1]. But perhaps the most compelling feature of inflation is a theory for the origin of density perturbations (the
seeds for the large-scale structure of the Universe) and anisotropies in the cosmic microwave background (CMB) [2].
Density and gravitational-wave perturbations are created during inflation from quantum fluctuations and “redshifted”
to sizes larger than the Hubble radius (RH ≡ H−1). They are then “frozen” until sometime after inflation when they
once again come within the Hubble radius. The last and most impressive confirmation of this idea has been provided
by the data of the Wilkinson Microwave Anisotropy Probe [3].

A general feature of inflation is the existence of scalar perturbations of wavelength larger than the Hubble radius.
During inflation a small region of size less than the Hubble radius grows large enough to encompass easily the comoving
volume of the entire presently observable Universe. This requires a minimum number of e-foldings, N >

∼ 60, where
N measures the logarithmic growth of the scale factor during inflation. However, most models of inflation predict a
number of e-foldings that is, by far, much larger than 60 [2]. This amounts to saying that there is a huge phase space
for super-Hubble perturbations. These super-Hubble perturbations will re-cross the Hubble radius only in the very
far future.

This paper deals with the issue of the physical influence of the infrared modes produced during inflation on cos-
mological observables such as the local Hubble expansion rate. The question is, can we see beyond the horizon and
learn the nature of the very long-wavelength perturbations. This question has already been posed in the literature
with contradictory answers [4, 5, 6, 7, 8, 9]. In this note we demonstrate that if adiabaticity holds, super-Hubble
perturbations do not have an impact on local physical observables, for instance, the local Hubble expansion rate. Our
results are valid at any order in perturbation theory.

Let us first review some generalities which will turn out to be useful. Since we are interested in very long-wavelength
perturbations, from now on we will neglect spatial gradients. Our starting point is the Arnowitt-Deser-Misner (ADM)
formalism, with metric

ds2 = −N2 dt2 +Ni dt dx
i + γij dx

i dxj .

The three-metric γij , and the lapse and the shift functions N and Ni, describe the evolution of the timelike hyper-
surfaces. The extrinsic curvature three-tensor is

Kij =
1

2N

(

Ni|j +Nj|i −
∂γij

∂t

)

,
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where three-space covariant derivatives with connection coefficients determined from γij are indicated by a vertical
bar. The trace K = Ki

i is the generalization of the Hubble parameter of homogeneous isotropic cosmologies. The
traceless part of the tensor is denoted by an overbar, Kij = Kij − 1

3
K γij . In the ADM formalism the equations

simplify considerably if we set N i = 0.
It is convenient to express the spatial metric as [10]

γij = exp
[

2α(t, xi)
]

hij(x
i),

where the conformal factor exp[α(t, xi)] may be interpreted as the spatial-dependent scale factor. The time-
independent three metric hij(x

i) (with determinant equal to unity) describes the three geometry of the conformally
transformed space. Within linear perturbation theory, α(t, xi) would contribute only to scalar perturbations, whereas
hij contains another scalar, as well as vector and tensor perturbations. Vector and tensor perturbations are necessary
to satisfy Einstein equations, however in the long wavelength limit they do not affect the equations for the scalar

perturbations. On super-Hubble scales, (∂K
i

j/∂t) = NKK
i

j and K = −(3/2N)α̇. This implies that K
i

j decays

with time and can therefore be safely set to zero. Since exp[α(t, xi)] is interpreted as a scale factor, we can use the
Hubble parameter H(t, xi) = α̇(t, xi)/N(t, xi) ≡ −K(t, xi)/3 in place of the trace K of the extrinsic curvature.

Now consider a Universe filled with some fluid(s) described by an energy-momentum tensor of the form Tµν =
(ρ+ P ) uµuν + P gµν , where ρ and P are the energy density and pressure, respectively. The four-velocity vector can

be chosen to be uµ = (1,~0). In the case of one fluid, this amounts to saying that a volume measured by a local
observer is comoving with the energy flow of the fluid. In the multi-fluid case, the volume comoving with the total
energy density ρ is not the same as the individual volumes comoving with the energy density components. However,
one can show that on super-Hubble scales all comoving volumes become equivalent [11], and therefore our choice of
the four velocity is well justified.

The relevant set of equations is provided by the continuity equation, N−1∂ρ/∂t = −3H(ρ+P ), and by N−1α̇ = H .
Eliminating the lapse function N from the set of equations, we derive

α̇+
1

3

ρ̇

(ρ+ P )
= 0. (1)

The quantity

F ≡ α+
1

3

∫ ρ dρ′

(ρ′ + P ′)
(2)

is therefore conserved in time at any order in perturbation theory. To understand its physical significance, consider
an adiabatic fluid for which the pressure is a unique function of the energy density P = P (ρ). If we set

exp
[

α(t, xi)
]

= a(t) exp
[

−ψ(t, xi)
]

(3)

and expand Eq. (2) to first order in perturbation theory, we find that the perturbation δ1F coincides with the comoving
curvature perturbation

ζ1 = −ψ1 −H
δρ1

ρ̇0

,

where ρ0 is the background value of the energy density. Similarly, expanding Eq. (2) to second order in perturbation
theory, one finds that the perturbation δ2F coincides with the definition of the second-order comoving curvature
perturbation ζ2 [12] (up to a constant piece ζ2

1 )

ζ2 = −ψ2 −H
δρ2

ρ̇0

− 2
H

ρ̇2
0

δρ̇1δρ1 − 2
δρ1

ρ̇0

(

ψ̇1 + 2Hψ1

)

+

(

δρ1

ρ̇0

)2 (

H
ρ̈0

ρ̇0

− Ḣ − 2H2

)

.

We conclude that δF is the nonlinear generalization of the comoving curvature perturbation on super-Hubble scales
for adiabatic fluids. Equivalently, ψ plays the role of the nonlinear generalization of the comoving linear gravitational
potential.
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For a generic nonadiabatic fluid, the perturbation of the pressure energy density δP can not be expressed in terms
of the perturbation of the energy density δρ. Perturbing Eq. (2) to first order, one recovers the nonconservation of
the comoving curvature perturbation

ζ̇1 = −
H

(ρ+ P )
δP nad

1 ,

where δP nad
1

= δP1 − (Ṗ /ρ̇) δρ1 is the first-order nonadiabatic pressure perturbation.
Let us now return to the physical influence of super-Hubble modes. We will consider the effect on the local

expansion rate of the Universe (although an effect on the local expansion rate suggests that there will be effects on
other cosmological measurables as well). We choose to work in the synchronous gauge for which N = 1 (together
with N i = 0). In this gauge the field equations look just like the familiar equations point by point. As mentioned,
for a generic set of fluids we may safely take the four velocity to be uµ = (1,~0) on super-Hubble scales, from which
we define the local expansion rate of tangential surfaces orthogonal to the fluid flow, i.e., the local expansion rate, to
be 1

3
Dµu

µ. In the synchronous gauge this quantity and H coincide.

Using Eq. (3), we find that at any order in perturbation theory the local expansion rate is H = ȧ/a − ψ̇. We
immediately infer that the local physical expansion rate is influenced by long-wavelength perturbations only if the
gravitational potential is time dependent.1 Let us first analyze the case of an adiabatic fluid. From Einstein’s equations
for a globally flat space we deduce (on super-Hubble scales)

3H2 = 8πGρ = −8πGP + 2Ḣ. (4)

If the pressure P is a unique function of the energy density, we may expand ρ = ρ0+∆ρ, where ρ0 is the energy density
entering the homogeneous Einstein equations from which the homogeneous scale factor a(t) is computed. Inserting
this expansion into Eq. (4) and eliminating the pressure in favor of the energy density ρ ∝ H2, we find a differential

equation of the generic form G

(

ψ̈, ψ̇
)

= 0, which does not contain any term proportional to ψ. Therefore, ψ = ψ(xi)

is a solution of Einstein equations at any order in perturbation theory and ψ̇ = 0 holds on super-Hubble scales. This
result reproduces the familiar result that the gravitational potential does not depend upon time for super-Hubble
modes if there is only one fluid in the Universe. As a by product of Eq. (2), we see that the perturbation of the energy
density vanishes on super-Hubble scales in the synchronous gauge at any order in perturbation theory.

From this generic argument we conclude that there is no influence of very long wavelength modes on the physical
local expansion rate of the Universe if adiabaticity holds (again, we have ignored gradients in ψ). In the adiabatic
case, the influence of infrared modes is not locally measurable. There is a simple explanation of this result. When
adiabaticity holds, the pressure is a well defined function of the energy density. This means that the Hubble rate is
only a function of the unique available physical clock, the energy density. Indeed, suppose that the local expansion
rate is H(t, xi) = H(ρ(t, xi), t). This leads to

(

∂H

∂t

)

xi

=

(

∂ρ

∂t

)

xi

(

∂H

∂ρ

)

t

+

(

∂t

∂t

)

xi

(

∂H

∂t

)

ρ

= −4πG(ρ+ P ) +

(

∂H

∂t

)

ρ

, (5)

where we have made use of Eq. (1) evaluated in the synchronous gauge, 3H = −ρ̇/(ρ + P ). Comparing Eq. (5)
with Ḣ = −4πG(ρ + P ), we see that (∂H/∂t)ρ = 0, and hence H(t, xi) = H(ρ(t, xi)). The dependence of the local
expansion rate of the Universe on the clock time takes the same form as in the unperturbed Universe when evaluated
at a fixed value of the only clock available, the energy density ρ. Infrared modes do not have any locally measurable
effect on the expansion rate of the Universe. This result applies, in particular, during inflation if the energy density
is dominated by a single inflaton field.

Our findings suggest that adiabatic super-Hubble modes cannot modify cosmological observables like the Hubble
rate.

1 Recall that we have ignored spatial gradients in ψ. A perturbative calculation of the effect of spatial gradients on the expansion rate
was considered in [13].
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